S.S. VIER

Contents lists available at ScienceDirect

Carbohydrate Research

journal homepage: www.elsevier.com/locate/carres

Note

The structure of the carbohydrate backbone of the LPS from Shewanella spp. MR-4

Evgeny Vinogradov a,*, Joanna Kubler-Kielb b, Anton Korenevsky c

- ^a Institute for Biological Sciences, National Research Council, Ottawa, ON, Canada K1A 0R6
- b National Institute of Child Health and Human Development, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
- ^c Department of Microbiology, College of Biological Science, University of Guelph, Guelph, ON, Canada N1G 2W1

ARTICLE INFO

Article history:
Received 20 May 2008
Received in revised form 5 June 2008
Accepted 8 June 2008
Available online 14 June 2008

Keywords: LPS Structure NMR Shewanella

ABSTRACT

The rough type lipopolysaccharide isolated from *Shewanella* spp. strain MR-4 was analyzed using NMR, mass spectroscopy, and chemical methods. Two structural variants have been found, both contained 8-amino-3,8-dideoxy-p-manno-octulosonic acid and lacked L-glycero-p-manno-heptose. A minor variant of the LPS contained phosphoramide substituent.

© 2008 Elsevier Ltd. All rights reserved.

Shewanella spp. strain MR-4, a Gram-negative bacterium isolated from the Black Sea, is an important environmental microorganism participating in complex biogeochemical processes involving metal reduction.^{1,2} Surface components of this organism play an important role in its adhesion to mineral surfaces.³ Shewanella spp. MR-4 produces a large quantity of capsular polysaccharide (CPS), which gives the cells 'smooth' appearance. However, its LPS has no polymeric O-chain, belonging to the 'rough-type'. The CPS⁴ contains a monosaccharide similar to anthrose that makes it cross-reactive with the BclA, a glycoprotein located on the surface of B. anthracis spores.⁵ Here, we describe the results of structural analysis of the Shewanella spp. MR-4 LPS.

Monosaccharide analysis of the *Shewanella* MR-4 LPS showed the presence of two major constituents: p-galactose and p-glycero-p-manno-heptose, and three minor constituents: glucosamine (GlcN), mannose (Man), and glucose (Glc). The GlcN originated from the backbone of lipid A, Man, and Glc appeared in the GC analysis of alditol acetates as a result of the reduction of fructose, which was identified in the LPS-derived oligosaccharides by NMR. The absolute configuration of Gal, DDHep, and GlcN were

determined as D using GLC of acetylated 2-butyl glycosides. Fatty acid analysis of the LPS revealed the presence of 14:0(3-OH), 14:0, and 12:0 fatty acids. O-Deacylated LPS contained 14:0(3-OH) acids, being attached as amides to the GlcN of lipid A.

Alkaline deacylation of the LPS from Shewanella spp. MR-4 gave a complex mixture of oligosaccharides that were separated by HPAEC. Only the three major products were analyzed. The structure of the oligosaccharide 1 as presented in Scheme 1 was determined by 2D NMR spectroscopy (Table 1). Assignment of the NMR spectra showed the presence of four monosaccharide residues: α -GlcN1P, β -GlcN4P, α -8-aminoKdo4P, and α -DDHep3P. The identity of the monosaccharides was established on the basis of proton and carbon chemical shifts and H,H vicinal coupling constants. The presence of the amino group at position 8 of the Kdo followed from the high field chemical shift of C-8 (44.3 ppm). All monosaccharides were phosphorylated, and the phosphate group position was determined using ¹H-³¹P NMR correlation spectroscopy. The sequence of monomeric components was determined using NOE (correlations B1A6w, E1C5s, E1C7s) and HMBC (H-C correlations B1A6, C2B6, E1C5) data. ESI mass spectra of oligosaccharide 1 (negative mode) contained a peak of a double charged ion corresponding to a molecular mass of 1072 Da (calculated for C27H53N3O33P4 1071.6 Da). The second major oligosaccharide had the same structure but without phosphate at O-4 of the 8-aminoKdo. This was confirmed by NMR and MS analysis (data not shown).

Oligosaccharide **2**, eluted near the solvent front in HPAEC, contained the residues of β -fructofuranose and α -galactopyranose

Abbreviations: LPS, lipopolysaccharide; DDHep, D-glycero-D-manno-heptose; Kdo, 3-deoxy-D-manno-oct-2-ulosonic acid; 8-aminoKdo, 8-amino-3,8-dideoxy-D-manno-oct-2-ulosonic acid; P, phosphate; PEtN, phosphoethanolamine; HPAEC, high performance anion exchange chromatography.

^{*} Corresponding author. Tel.: +1 613 990 0832; fax: +1 613 952 9092. E-mail address: evguenii.vinogradov@nrc.ca (E. Vinogradov).

KOH products:

Scheme 1. Structures of the isolated oligosaccharides derived from the LPS from *Shewanella* spp. MR-4. *PN* is phosphoramide. ac = 14:0(3-OH) acyl group. GalA Y is present in about 50% on each of the structural variants of LPS-Hy. Residue Xxx (G*) is a product of alkaline degradation of the Gal G.

(Scheme 1), and many variants of the degradation products of the reducing-end monosaccharide (6-substituted galactose). The structure of the oligosaccharide **2**, except for the reducing end monosaccharide, was determined by NMR (Table 1). The β -fructofuranose ring size and anomeric configuration were identified by ^{13}C chemical shift comparison with the known values. Its position was determined from HMBC correlation between C-2 of Fru and H-6 of Gal H. This oligosaccharide was obtained by hydrolysis of the phosphodiester bond between Gal F and Hep E, and the subsequent destruction of the Gal residues F and partially G.

Acetic acid hydrolysis of the LPS gave a mixture of mono- and oligosaccharides. They were separated by gel filtration and anion exchange chromatography. The major products were galactotriose and free galacturonic acid. Products originating from Hep-(1-5)-8-aminoKdo disaccharide were not analyzed because they gave many forms with variable Kdo degradation products at the end and different phosphorylations.

NMR analysis of the O-deacylated LPS (LPS-Hy) showed the presence of two structural forms (variants 1 and 2). Variant 1 contained all components that are required to produce compounds 1–3 upon KOH or AcOH treatment. Thus, alkaline treatment cleaves the phosphodiester bond between Gal F and phosphate group, and destroys Gal F completely and Gal G partially, resulting in oligosaccharide 2. The rest of the molecule remains as the oligosaccharide 1. The connection between Gal G and DDHep E via a phosphodiester bond can be traced in the $^1\mathrm{H}-^{31}\mathrm{P}$ HMQC correlation (Fig. 1). The Kdo in the LPS-Hy was partially substituted by α -GalAP (residue Y) at O-4, which is visible in the $^1\mathrm{H}-^{31}\mathrm{P}$ HMQC correlation spectrum. Cleavage of α -GalAP in KOH gave an analog

of the oligosaccharide **1** without the phosphate group at O-4. The LPS which had phosphate group at C-4 of 8-aminoKdo without galacturonic acid retained this phosphate and gave the oligosaccharide **1** after KOH treatment. ESI MS data of the LPS-Hy (Fig. 2) showed structural variants with HexA (Hex₄HexA₁Hep₁HexN₂K-do₁C14OH₂P₄, observed molecular mass of 2350.6 Da, calculated 2350 Da) and without HexA (Hex₄Hep₁HexN₂Kdo₁C14OH₂P₄, observed molecular mass of 2174.5 Da, calculated 2173.9 Da), as well as a peak of 2297.6 molecular mass corresponding to an additional *P*EtN substituent to the structure without GalA, and a minor peak of -28 Da probably due to the replacement of 14:0(3-OH) acyl groups by 12:0(3-OH) acyl groups.

The NMR spectra of the LPS-Hy contained the signals of another DDHep residue E', linked to the 8-aminoKdo (LPS-Hy variant **2**). DDHep E' was phosphorylated at positions 2 and 3 (Fig. 1), and most interestingly the ³¹P signal of the substituent at O-3 appeared at 16.5 ppm, which indicates the presence of a phosphoramide group. A similar substituent has been identified recently in *Xanthomonas campestris* LPS.⁷ Unfortunately, no derivatives originating from variant **2** were identified in the LPS hydrolysates; this variant also showed no signal in the mass spectrum and thus its structure as presented here should be considered tentative.

The lipid A-core part of LPS from several *Shewanella* strains was elucidated previously.^{8–12} Most of them contained 8-aminoKdo residue in place of Kdo. The absolute stereochemistry of this monosaccharide has been confirmed recently.¹³ The structure described in the current publication gives one more example of 8-aminoKdo containing LPS, which seems to be a characteristic feature of *Shewanella*.

Table 1¹H and ¹³C NMR data for the isolated oligosaccharides

Unit, compound	Atom	1	2 (3ax)	3 (3eq)	4	5	6(a)	7(a) (6b)	8a (7b)	8b
α-GlcN1P A, 1a	¹ H ¹³ C ³¹ P	5.74 93.2 2.0	3.44 55.4	3.93 70.9	3.52 71.1	4.12 73.8	3.91 70.4	4.26		
α-GlcN1 <i>P</i> A, LPS-Hy	¹ H ¹³ C ³¹ P	5.50 95.0 0.3	3.90 55.0	3.85 71.4	3.80 70.0	3.98 72.9	3.95 69.2	4.18		
β-GlcN4 <i>P</i> B, 1a	¹ H ¹³ C ³¹ P	4.89 100.5	3.15 56.9	3.93 72.9	3.97 75.4 3.1	3.79 75.0	3.54 63.8	3.67		
β-GlcN4 <i>P</i> B, LPS-Hy	¹ H ¹³ C ³¹ P	4.67 103.4	3.90 56.6	3.94 74.6	3.92 74.8 2.14	3.77 75.0	3.55 64.3	3.74		
α-AminoKdo C, 1a	¹ H ¹³ C ³¹ P	175.4	2.16 101.3	2.26 35.3	4.61 71.3 2.9	4.36 74.9	3.86 75.1	4.11 67.0	3.08 44.4	3.51
α-AminoKdo C with GalA Y, LPS-Hy var. 1	¹ H ¹³ C ³¹ P		2.12	2.34 35.6	4.65 71.9 -0.6	4.40 75.5	3.92 75.7	4.13 67.0	3.24 44.3	3.55
α-AminoKdo C no GalA Y, LPS-Hy var. 1	¹ H ¹³ C ³¹ P		2.12	2.34 35.6	4.62 71.1 1.4	4.33 75.2	3.92 75.7	4.13 67.0	3.24 44.3	3.55
α -AminoKdo C' with GalA Y, LPS-Hy var. 2	¹ H ¹³ C ³¹ P		2.12	2.34 35.6	4.66 71.9 -0.6	4.49 75.0	3.92 75.7	4.13 67.0	3.24 44.3	3.55
α -AminoKdo C' no GalA Y, LPS-Hy var. 2	¹ H ¹³ C ³¹ P		2.12	2.34 35.6	4.62 71.1 1.4	4.43 74.7	3.92 75.7	4.13 67.0	3.24 44.3	3.55
α-DDHep E, 1a	¹ H ¹³ C ³¹ P	5.12 102.2	4.30 70.5	4.36 77.1 2.9	3.93 67.4	4.12 74.9	4.12 73.8	3.73 63.6	3.79	
α-DDHep E, LPS-Hy var 1	¹ H ¹³ C ³¹ P	5.11 102.2	4.32 70.9	4.47 76.2 -0.7	3.92 66.5	4.07 74.6	4.04 73.2			
α-DDHep E', LPS-Hy var 2	¹ H ¹³ C ³¹ P	5.39 99.0	4.72 76.5 –10.2	4.55 80.6 16.8	4.10 66.9	4.18 74.4				
α-Gal H, 3	¹H ¹³C	4.91 99.5	3.84 69.2	3.90 70.3	4.00 70.1	3.99 72.0	3.76 62.0	3.76		
α-Gal H, 2 and LPS-Hy	¹ H ¹³ C	4.96 100.2	3.82 69.9	3.89 71.0	3.99 70.9	4.03 71.4	3.72 62.4	3.82		
α-Gal G, 3	¹³ C ³¹ P	5.16 100.8	3.87 69.2	3.91 69.9	4.07 70.1	4.25 70.7	3.69 67.9	3.89		
α-Gal G, LPS-Hy	¹³ C ³¹ P	5.24 94.3	3.91 69.6	4.14 70.5	4.06 71.0	4.21 70.8	3.72 68.4	3.95		
Gal-ol F, 3	¹ H ¹³ C	3.78 63.5	4.10 72.5	3.84 79.5	3.91 70.7	4.08 70.9	3.68 63.8			
α-Gal F, LPS Hy	¹ H ¹³ C ³¹ P	5.69 97.7 –0.7	4.07 70.0	3.94 73.7	4.30 65.7					
β-Fruf M, 2 and LPS-Hy	¹H ¹³C	3.68/3.74 61.7	105.2	4.17 78.2	4.10 76.0	3.86 82.6	3.67 63.8	3.82		
α-GalA Y, LPS Hy	¹ H ¹³ C ³¹ P	5.64 96.6 -0.6	3.93 69.8	4.03 70.6	4.38 72.0	4.50 74.2	176.5			

1. Experimental

1.1. Bacterial strains and lipopolysaccharide isolation

Shewanella spp. strain MR-4 was obtained from K. Nealson, Jet Propulsion Laboratory, Pasadena, CA and was grown aerobically in trypticase soy broth to an optical density (OD₆₀₀) of 1.0. Cells were harvested by centrifugation and LPS was extracted by the Darveau and Hancock method using EDTA and SDS on cells broken

in a French press followed by DNase, RNase, and protease treatment. The extracted LPS was precipitated in ice-cold 95% (v/v) ethanol containing 0.375 M MgCl₂.

1.2. NMR spectroscopy and general methods

 ^{1}H and ^{13}C NMR spectra were recorded using a Varian Inova 500 spectrometer in $D_{2}O$ solutions at 25 °C with an acetone standard (2.23 ppm for ^{1}H and 31.5 ppm for ^{13}C) using

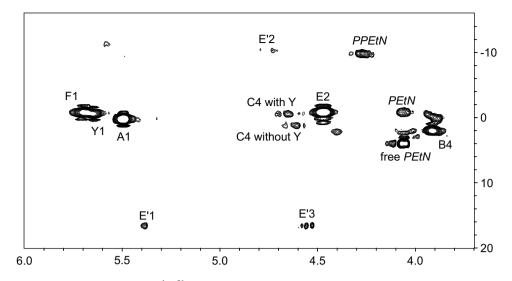


Figure 1. ¹H-³¹P HMQC spectrum of Shewanella spp. MR-4 LPS-Hy.

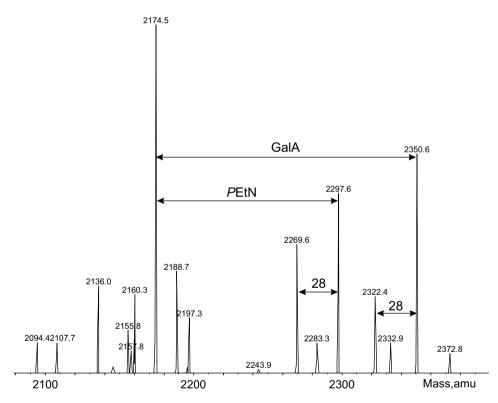


Figure 2. Reconstructed ESI mass spectrum of the Shewanella spp. MR-4 LPS-Hy.

standard COSY, TOCSY (mixing time 120 ms), NOESY (mixing time 200 ms), HSQC, HMBC (100 ms long-range transfer delay), $^1 H-^{31} P$ HMQC, and HMQC–TOCSY (optimized for 11 Hz coupling constant) pulse sequences. Spectra of the LPS-Hy were recorded at 60 °C in 5% fully deuterated SDS. 24% NH₄OH (10 μ L) were added to the 0.6 mL D₂O sample. ESI mass spectra were obtained using a Micromass Quattro spectrometer in 50% MeCN with 0.2% HCOOH at a flow rate of 15 μ L/min with direct injection. GLC, GLC–MS, methylation, and monosaccharide analyses and preparation of the oligosaccharides were performed as described. $^{8-10}$

Acknowledgments

The research was partially supported by a US-DOE Natural and Accelerated Bioremediation Research Grant and by the Intramural Research Program of the NIH, NICHD. Authors thank J. Stupak (NRC, Canada) for the ESIMS analysis.

References

- 1. Nealson, K. H.; Myers, C. R.; Wimpee, B. B. Deep-Sea Res. 1991, 38, S907–S920.
- Marsili, E.; Baron, D. B.; Shikhare, I. D.; Coursolle, D.; Gralnick, J. A.; Bond, D. R. Proc. Natl. Acad. Sci. U.S.A. 2008, 105, 3968–3973.

- 3. Korenevsky, A. A.; Vinogradov, E.; Gorby, Y.; Beveridge, T. J. *Appl. Environ. Microbiol.* **2002**, 68, 4653–4657.
- Vinogradov, E.; Nossova, L.; Korenevsky, A.; Beveridge, T. J. Carbohydr. Res. 2005, 340, 1750–1753.
- Kubler-Kielb, J.; Vinogradov, E.; Hu, H.; Leppla, S. H.; Robbins, J. B.; Schneerson, R. Proc. Natl. Acad. Sci. U.S.A., in press, doi:10.1073/pnas.0803897105.
- 6. Bock, K.; Pedersen, C. Adv. Carbohydr. Chem. Biochem. 1983, 41, 27-66.
- Silipo, A.; Molinaro, A.; Sturiale, L.; Dow, J. M.; Erbs, G.; Lanzetta, R.; Newman, M. A.; Parrilli, M. J. Biol. Chem. 2005, 280, 33660–33668.
- Vinogradov, E.; Korenevsky, A.; Beveridge, T. J. Carbohydr. Res. 2002, 337, 1285– 1289.
- Vinogradov, E.; Korenevsky, A.; Beveridge, T. J. Carbohydr. Res. 2003, 338, 1991– 1997.
- Vinogradov, E.; Korenevsky, A.; Beveridge, T. J. Carbohydr. Res. 2004, 339, 737–740.
- 11. Silipo, A.; Leone, S.; Molinaro, A.; Sturiale, L.; Garozzo, D.; Nazarenko, E. L.; Gorshkova, R. P.; Ivanova, E. P.; Lanzetta, R.; Parrilli, M. Eur. J. Org. Chem. 2005, 2005, 2281–2291.
- Moule, A. L.; Galbraith, L.; Cox, A. D.; Wilkinson, S. G. Carbohydr. Res. 2004, 339, 1185–1188.
- Leone, S.; Molinaro, A.; De Castro, C.; Baier, A.; Nazarenko, E. L.; Lanzetta, R.; Parrilli, M. J. Nat. Prod. 2007, 70, 1624–1627.